CUHK Department of Mathematics
 Enrichment Programme for Young Mathematics Talents 2019
 Number Theory and Cryptography (SAYT1114)
 Final Examination

- The total score for the examination is $100+15$ (15 points for the bonus question).
- If you obtain X points, your score will be $\min (X, 100)$.
- Time allowed: $(135+\varepsilon)$ minutes.
- The use of calculator is allowed.
- Unless otherwise specified, all variables defined in the exam paper are integers.
- The function φ is the Euler totient function.

Q1. (5 points) True or false. For each of the statements below, determine if it is true or false. You are not required to justify your answer.
(a) (1 point) $\operatorname{gcd}(a b, c) \mid \operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$ for all $a, b, c>0$.
(b) (1 point) Let x be a real number. If $\lfloor n x\rfloor=n\lfloor x\rfloor$ for all $n>0$, then x is an integer.
(c) (1 point) Let a and b be nonzero. Then there exist infinitely many composite numbers in the form of $a k+b$.
(d) (1 point) If $a, b<2^{2019}$, then computing $\operatorname{gcd}(a, b)$ using Euclidean algorithm takes at most 2019 steps.
(e) (1 point) Let p and q be two distinct primes in the form of $4 k+3$. Then there exist a and b such that $a^{2}+b^{2}=p q$.

Q2. (11 points) Consider the linear Diophantine equation $4488 x+5678 y=238$.
(a) (3 points) Using Euclidean algorithm, compute $\operatorname{gcd}(4488,5678)$.
(b) (8 points) Using the calculation in (a), find all solutions of the given equation.

Q3. (8 points) Let $a, b>0$.
(a) (6 points) Suppose $g c d(a, b)=1$ and $a b$ is a perfect cube. Show that both a and b are perfect cubes.
(b) (2 points) If the condition $\operatorname{gcd}(a, b)=1$ is removed, can we still conclude that both a and b are perfect cubes? Explain.

Q4. (10 points)

(a) (2 points) Solve $3 x \equiv 9(\bmod 12)$.
(b) (8 points) Find all the solutions of the following congruences

$$
\left\{\begin{aligned}
x \equiv 3 & (\bmod 5) \\
x \equiv 2 & (\bmod 7) \\
3 x \equiv 9 & (\bmod 12)
\end{aligned}\right.
$$

Q5. (10 points) Using the fact that $164^{2} \equiv-1(\bmod 2069)$, find a solution of $x^{2}+y^{2}=2069$. (Hint: The identity $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}$ may be useful.)

Q6. (11 points) Let $n>0$. Prove the following facts about $\varphi(n)$.
(a) (2 points) If n is even, then $\varphi(n) \leq \frac{n}{2}$.
(b) (6 points) If $n>2$, then $\varphi(n)$ is even.
(Hint: either n has an odd prime factor, or $n=2^{k}$ for some $k>1$.)
(c) (3 points) If $n>2$, then $\varphi(\varphi(n))<\frac{n}{2}$. You can use the results of (a) and (b).

Q7. (15 points) Given an odd number $m>1$.
If m is a prime, by Fermat's Little Theorem, we have

$$
2^{m-1} \equiv 1(\bmod m)
$$

Is the converse true, i.e. if $2^{m-1} \equiv 1(\bmod m)$, does it follow that m is a prime? The answer is negative, and the smallest counter-example is $m=341=31 \times 11$.
In this question, we are going to show that there are infinitely many (odd) composite numbers m such that $2^{m-1} \equiv 1(\bmod m)$.
(a) (4 points) Show that $2^{m}-1$ is composite if m is composite.
(b) (8 points) Let $n:=2^{m}-1$. Show that, if $2^{m-1} \equiv 1(\bmod m)$, then $2^{n-1} \equiv 1(\bmod n)$. (Hint: Note that $2^{m} \equiv 1(\bmod n)$, so one just needs to show $m \mid(n-1)$.)
(c) (3 points) Using (a) and (b), finish the proof that there are infinitely many (odd) composite numbers m such that $2^{m-1} \equiv 1(\bmod m)$.

Q8. (15 points) Given a positive integer n, let $s(n)$ be the number of incongruent solutions $\bmod n$ of the equation $x^{2} \equiv 1(\bmod n)$.
For example, $s(12)=4$ since $1^{2} \equiv 5^{2} \equiv 7^{2} \equiv 11^{2} \equiv 1(\bmod 12)$.
By Chinese Remainder Theorem, s is multiplicative; that is, if $g c d(m, n)=1$ then $s(m n)=$ $s(m) s(n)$. Therefore, it suffices to find $s\left(p^{k}\right)$ for primes p and positive integers k.
(a) (6 points) Let p be an odd prime and $k>0$. Show that $s\left(p^{k}\right)=2$.
(Hint: show that, if $x^{2} \equiv 1\left(\bmod p^{k}\right)$, then $x \equiv 1\left(\bmod p^{k}\right)$ or $x \equiv-1\left(\bmod p^{k}\right)$.)
(b) (9 points) It remains to consider $s\left(2^{k}\right)$ for $k=1,2, \ldots$.
(i) (3 points) Compute $s(2)$ and $s(4)$.
(ii) (6 points) Show that $s\left(2^{k}\right)=4$ for $k \geq 3$.
(Notice that $s(n) \leq 2$ if and only if $n=2,4, p^{k}, 2 p^{k}, p$ is any odd prime. Does this look familiar? Indeed, there exists a primitive root $\bmod n$ precisely when $n=2,4, p^{k}, 2 p^{k}$. You can investigate further when you are home.)

Q9. (15 points) Let p be a prime greater than 3 . For an integer a not divisible by p, let \bar{a} denote the multiplicative inverse of $a \bmod p^{2}(\operatorname{not} \bmod p)$.
(a) (3 points) For $p=5$, show by explicit computation that $\overline{1}+\overline{2}+\overline{3}+\overline{4} \equiv 0(\bmod 25)$.
(b) (12 points) Consider the polynomial $Q(x):=(x-1)(x-2) \ldots(x-(p-1))$. If we write $Q(x)=x^{p-1}+a_{p-2} x^{p-2}+\cdots+a_{1} p+a_{0}$, it is known that $p \mid a_{i}$ for $1 \leq i \leq p-2$. (The proof is not difficult, but not required in this question.)
(i) (2 points) Show that $a_{0}=(p-1)$!.
(ii) (7 points) By considering $Q(p)$, show that $p^{2} \mid a_{1}$.
(iii) (3 points) Hence, prove that $\overline{1}+\overline{2}+\cdots+\overline{p-1} \equiv 0\left(\bmod p^{2}\right)$. This result is known as Wolstenholme's theorem.

Q10 (Bonus Question). (15 points) Given $n>0$. Pick $1 \leq a_{1}<a_{2}<\cdots<a_{k} \leq n$ to form a set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Denote by M the product of the k integers. The set is called good if $a_{i}^{2} \nmid M$ for all $i=1,2, \ldots, k$.

Let $h(n)$ be the size of the largest good set that can be formed.
(a) (3 points) Compute $h(6)$.
(b) (12 points) Determine $h(n)$. Partial credit will be awarded for finding good upper/lower bounds on $h(n)$.

The End

